请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

竞赛小说 www.jsxs.net,最快更新如何形成清晰的观点最新章节!

    一

    人们普遍认为,科学最初是通过量化才变得精确,而精确科学(exact sciences)则首推数学。化学家一开始的推理并不明确,直到拉瓦锡展示了如何用平衡的概念来检验各种化学理论,于是化学一下子变成了精确无疑的科学的一个典范,所以我们经常把它与光学、热学、电学等等量齐观。然而,后几门学科主要是对普遍法则的研究,而化学则仅限于研究某一类物质的关系与类别。所以,化学实际与植物分类学、动物学属于一类。不过,与这些学科相比,我们可以明显发现化学从量化处理中获得的优势。

    就算是最简单的量化标准,比如矿物学家用来区分硬度的标准等,都有一定的作用。单单是计算出雌蕊和雄蕊的数量,这种简单的方式就足以让植物学脱离混乱的状态。不过,数学处理方法的优势更多地来自测量而非计数,更多的来自连续的量而非离散的数。数字只不过在我们的思维中建立了一个准确的量,虽然有一定的好处,但极少能发展成崇高的思想,更多地是化成了一些平淡无奇的东西。培根所说的两个派别,一个注重差异,一个注重共性,对数字的使用可能只对数字较少的一方有所帮助,而对其过分使用又会导致思想变得狭隘。但不管通过何种方式追求精确,“持续的量”这个概念都有很大的用处。它本身就是最精细的归纳工具,绝无放大差异之虞。若一位博物学家要研究某一物种,他会搜集许多类似的标本。经过仔细的观察后,他会发现其中一些在某个方面有相似之处。例如,它们可能都有一个S形的标记。他发现,这些标本并不是完全相似,比如它们的S形标记可能形状并不是完全相同。不过,由于这些差异我们可能会发现,这些标本的任意两个之间都存在某种模式,在它们之间建立联系。然后他发现其他的模式可能差异非常明显,例如有的标记可能是C形的。问题是,他是否可以找到在这个标记和其他标记类型之间建立联系的中间项。在某些情况下,有些起初他觉得不太可能实现的,但最终却是成功的;而有些起初觉得可能的,最终却没有找到。这样,他从自然的研究中就问题的特征建立了一个新的概念。例如,他获得了这样的观点:一片叶子中包含花朵的各个部分,椎骨中包含头骨。我也不必解释其中的逻辑动机。这就是博物学方法的精髓[27]。用这样的方法,他先后得出不同特点,最终得出某个动物种群的概念。一个种群中个体的差异无论有多大,都有一定的局限,这里我们也不会再多涉及。随后我们也会讨论完整的分类方法,但是目前我只想指出,博物学观念的构成是通过持续性的观点或者模式之间的过渡来实现的。目前,博物学家是伟大的观念构建者,这一点是其他科学领域望尘莫及的,我们也必须在逻辑学中师从他们。“连续性”这一概念能够极大地帮助形成真实的、合理的观念,这一点也是随处可见的。通过这种方法,我们可以将巨大的差异分解开来,在不同程度的基础上加以解决。不断采用这种方法对于观念的扩展有着很大的价值。我建议大家好好利用这一观点,至于那些因为对其忽略而产生的谬论,已经对哲学产生了很大危害,所以我们应该对其进行更进一步的研究。当下,我希望所有读者都能对该观念的使用加以注意。

    在数字研究方面,连续性是须臾不可或缺的。就算是在不存在连续性的地方,人们也在不断地引入这个概念。例如,美国平均每平方英里人口数为10.7人,纽约每栋房屋的住户人数为14.72人[28]。另一个例子是凯特勒(Quetelet)、高尔顿(Galton)成功地将误差分布用于生物学与社会学的研究。将连续性用于实际上不存在持续性的实例中,也说明了另一个方面的问题,这里需要单独加以说明————虚构有时候也在科学中有着重要的作用。

    二

    概率论就是量化的逻辑学。对任何前提而言,概率都有两种必然的情况,即真实的必然情况与虚假的必然情况。在积分演算中,数字1和0就代表着知识的两个极端。我们大致可以这样说,两者之间的数字代表着证据倾向哪一端的程度。一般来看,概率论的问题就是,根据给定的事态,量化地确定某一事实发生的可能性。这就相当于在证明或证否一个事实上,某个事态的价值有多大。于是,概率的问题也就归约成了逻辑学的普遍问题。

    概率是一个连续的量,所以用这种方法来研究逻辑学是有很大好处的。有些学者的研究表示,通过概率微积分的方法,每一个可靠的推理都可以根据有限范围内的数字,通过合理的算术运算来表示。如果这一点属实,那么逻辑学的主要问题,即对某一事实的观察如何给予我们另一无关事实的知识,就简化成了算术的问题。这样看来,在对这个悖论进行更深层次的解读之前,最好了解一下这个观点。

    不过,概率论的学者在这一方面并未达成共识。在我看来,它应该是数学所有分支中最容易得出错误结论的一个。在基础几何中,推理往往会得到看似荒谬的结果,但基本不会有错误的结论。也许我们会问,是否存在具有广泛性的概率学专著,其中不存在错误的结论。这种探问部分源自对常规方法的需求。由于这一课题中含有太多微妙的东西,因此没有这类方法的帮助,很难把其中的问题简单地进行公式化解决。然而在此之外,微积分的基本原则多多少少地存在着一些争论。对于实用导向的问题,可疑之处相对较少。然而,将微积分扩展到其他领域的工作尚未取得共识。

    要想克服上面所说的最后一个难题,唯一的方法就是在脑海中对概率形成清晰的观点,方法详见上篇文章。

    三

    若想就概率形成清晰的观点,我们需要考虑不同程度的概率之间真实的、可感知的差别。

    毫无疑问,概率只对某些推理特别有用。洛克(Locke)对此是这样解释的:“注意到这一点之后,一位数学家肯定地认为,三角形中三个内角之和等于两个直角之和,这是因为他掌握了几何证据。”他又表示:“但是有另一个人,他从未付出任何努力进行观察和证明,他只是听到一位著名数学家的言论,表示三角形中三个内角之和等于两个直角之和,于是他也表示赞成这一观点,即作为一个正确的观点加以接受。在这个实例中,他表示赞同的基础是该事件的概率,其证据很大程度上会是正确的。接受这个证据的人,通常不会提出任何反对的或是在他所掌握知识之外的主张,尤其是在这种情况下。”洛克的《人类理解论》(An Essay Concerning Human Understanding)中包括许多类似的段落,这些段落完成了最初几个步骤的深层次分析,但并未做进一步的发展。本文集的第一篇说明,推理是否有效与人们是否倾向于接受它无关,无论这种倾向有多么强烈。然而,普遍的事实是,如果论证的领域为真实的,则与之相关的结论也为真实的。值得注意的是,从逻辑学看来,任何一个论证都不能被孤立地来看,而是要放到由同样的方法构建起来的论证“类”中来看,也就是若前提为真结论也必然为真的论证。一个论证如果是演绎的,那么它就永远为真;如果是或然的,那么就是在大多数情况下为真。如洛克所说,或然性的论证“大部分为真理”。

    根据这一说法,不同概率程度之间真实的、可感知的差异就是,在对两种不同推理模式的经常性运用中可以发现,某一程度比另一程度更经常地具有真实性,这也就是区别的意义所在。很明显,这是事实中唯一存在的差别。在某些前提下,一个人得出了某个结论,只从推论本身出发,唯一有意义的问题就是结论是否为真,存在与不存在之间是否存在某种中间项。巴门尼德(Parmenides)曾说:“只有存在是存在的,而非存在是完全不存在的。”这一观点与我们上一篇文章对“真实”这个概念的分析完全一致。我们发现,真实与虚幻之间的差别在于,充分的研究是否会让某个观点被普遍接受,而其他观点均遭拒绝。这一预想关乎现实和虚幻的概念,需要将二者完全分离。这也属于人类思想中非黑即白、非天堂即地狱之类的问题。然而,长远看来,概率论的观点还以某种固定比率与某个事实对应,给定的某种推理模式有时有效,有时则不然。我们接连不断地进行某种类型的推理,在最初的十几个或几百个实例中,成功的比率可能有着极大的波动性。但是,如果有成千上万个案例,波动就变得越来越小了。只要我们能够尽量将推理持续下去,这个比率就会愈发贴近某个固定的限值。因此,我们也许就可以通过实例的比例来对某种概率进行定义。

    从前提A到结论B的推理依赖于相应的主导原则。如果A中的某个事实是真实的,则B中的事实也是真实的。这种概率由某种分数组成,分子是A、B均成立的次数,分母是A成立的次数(B不考虑)。就算不称其为推理概率,我们将其称为“在A发生的情况下B也发生”的概率是不会有人提出异议的。而对于B的概率,条件里没有给出,在这里也就没有意义。的确,当条件真正的含义十分明显的时候,我们也容许省略的情况。但是我们应该尽量避免这样的习惯(该习惯是非常普遍的),因为这样会导致思考的模糊。就像某种带来因果关系的行为要么决定某事件的发生,要么决定它不发生,或者是让它要么更轻易地发生,要么轻易地不发生,从而于发生[29]这个概念产生某种内在概率。我认为很清楚的一点是,在概率论的运用中出现的那些最糟糕的、最持久的错误都是源自这个表达[30]的恶性循环。

    四

    不过,还有一个关键的问题需要澄清。根据我们的讨论,概率的观点从本质上看属于一种可以无限期重复的推理。就单独的某次推论而言,要么全对,要么全错,无所谓概率。单次实例没有概率可言。如果一个人要在有25张红色卡片和1张黑色卡片的一叠卡片中抽取卡片,或是从有25张黑色卡片和1张红色卡片中抽取卡片,且如果抽到红色,他就会获得幸福,而抽到黑色则代表不幸,那么他当然应该从红色卡片较多的一叠中抽取。不过,因为不能重复,所以依然存在着风险。这一点与我们之前谈过的概率论是很难调和的。然而,就算他选择了红色多的那一叠,最后还是抽到了黑色,又该如何宽慰他呢?他也许会说,自己完全是按理行事,但是在他身上,道理仿佛还是成了无用的东西。而就算他抽到了红色,也许还是会当成一次幸运的意外。倒不是说如果他从另一叠中抽取,他就会抽到黑色,因为“如果A,那么B”这种前提对于单个实例来说是没有意义的。真理在于真实的前提所对应的事实。与“如果A,那么B”这个前提对应的事实也许是“只要A发生,B就会发生”,但是在我们的虚构实例中,只考虑这个人的话是没有可比性的,“他如果从另一叠中抽取,就会抽到黑色卡片”这种说法就没有依据。的确,有效的推理离不开真实的前提,如果前提属实,结论也就属实。唯一与这种前提对应的事实是:只要前件A为真,则后件B也为真。就此而论,从个别实例中进行推理是没有意义的。

    这些想法的出现首先是为了排除上述的难点。然而,穷举是做不到的。比方说,如果我们试验一千次,然后把成功和失败的比例得出来,那么这很有可能就是大概率的结果。但是,如前所述,这不过是说:概率的结果迟早会显示出来而已。

    在人的一生中,或然事件的数量、可能的推理数量是无穷的,于是人无法完全肯定最后的结果会与概率一致。那么,即便我们把所有已经发生的或然事件都考虑进来,他也不能肯定一定不会失败,而他的境况与之前相比也不会有什么质的变化,最多是量的变化。概率论中毋庸置疑的一点是久赌必输。就算他采用了鞅的方法(有些人觉得这种方法是不会出错的),而据我所知,这种方法通常不允许在赌场中使用。在这种情况下,他首先赌1美元,如果输了就要赌2美元,再输了就是4美元,然后是8美元。之后他如果赢了,就一共输了1+2+4=7,赢了1美元。他无论输了多少,只要赢了一次,就会比最初的时候多得1美元。用这种方法,他一开始也许会赢,但是最后总会有用尽运气的时候,没有钱再抵押,于是不得不放弃所有的赌注。可... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”